Search results for "Induced pluripotent stem cell"

showing 10 items of 81 documents

Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells

2017

Two-dimensional (2D) cell cultures have been extensively used to investigate stem cell biology, but new insights show that the 2D model may not properly represent the potential of the tissue of origin. Conversely, three-dimensional cultures exhibit protein expression patterns and intercellular junctions that are more representative of their in vivo condition. Multiclonal cells that grow in suspension are defined as "spheroids," and we have previously demonstrated that spheroids from adipose-derived stem cells (S-ASCs) displayed enhanced regenerative capability. With the current study, we further characterized S-ASCs to further understand the molecular mechanisms underlying their stemness pr…

0301 basic medicineAdipose stem cellPhysiologyCellular differentiationClinical BiochemistryCell Culture TechniquesAdipose tissueBiology03 medical and health sciences0302 clinical medicineOsteogenesisSpheroids CellularLong-term cultureMiR-142-3pmicroRNAAdipocytesHumansInduced pluripotent stem cellCell ProliferationAdipogenesisStem CellsGene Expression Regulation DevelopmentalCell DifferentiationCell BiologyIn vitroCell biologyMicroRNAs030104 developmental biologyMesenchymal differentiationCell cultureAdipogenesis030220 oncology & carcinogenesisStem cellMiRNA
researchProduct

Mitochondrial dynamics and metabolism in induced pluripotency.

2020

Somatic cells can be reprogrammed to pluripotency by either ectopic expression of defined factors or exposure to chemical cocktails. During reprogramming, somatic cells undergo dramatic changes in a wide range of cellular processes, such as metabolism, mitochondrial morphology and function, cell signaling pathways or immortalization. Regulation of these processes during cell reprograming lead to the acquisition of a pluripotent state, which enables indefinite propagation by symmetrical self-renewal without losing the ability of reprogrammed cells to differentiate into all cell types of the adult. In this review, recent data from different laboratories showing how these processes are control…

0301 basic medicineAdultAgingCell typeSomatic cellCellInduced Pluripotent Stem CellsBiologyBiochemistryMitochondrial Dynamics03 medical and health sciences0302 clinical medicineEndocrinologyGeneticsmedicineHumansInduced pluripotent stem cellMolecular BiologyCell DifferentiationCell BiologyCellular ReprogrammingPhenotypeCell biology030104 developmental biologymedicine.anatomical_structureEctopic expressionReprogramming030217 neurology & neurosurgeryFunction (biology)Signal TransductionExperimental gerontology
researchProduct

Adult rat myelin enhances axonal outgrowth from neural stem cells.

2018

Axon regeneration after spinal cord injury (SCI) is attenuated by growth inhibitory molecules associated with myelin. We report that rat myelin stimulated the growth of axons emerging from rat neural progenitor cells (NPCs) transplanted into sites of SCI in adult rat recipients. When plated on a myelin substrate, neurite outgrowth from rat NPCs and from human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) was enhanced threefold. In vivo, rat NPCs and human iPSC-derived NSCs extended greater numbers of axons through adult central nervous system white matter than through gray matter and preferentially associated with rat host myelin. Mechanistic investigations excluded …

0301 basic medicineAgingNeuronalNudeMessengerNeurodegenerativeInbred C57BLRegenerative MedicineMedical and Health SciencesMyelinMiceNeural Stem CellsStem Cell Research - Nonembryonic - HumanCyclic AMPAxonPhosphorylationGray MatterInduced pluripotent stem cellExtracellular Signal-Regulated MAP KinasesSpinal Cord InjuryMyelin SheathInbred F344Neuronal growth regulator 1Stem Cell Research - Induced Pluripotent Stem Cell - HumanChemistryGeneral MedicineBiological SciencesWhite MatterNeural stem cellCell biologymedicine.anatomical_structureSpinal Cord5.1 PharmaceuticalsNeurologicalFemaleStem Cell Research - Nonembryonic - Non-HumanDevelopment of treatments and therapeutic interventionsPhysical Injury - Accidents and Adverse EffectsNeuriteCell Adhesion Molecules NeuronalCentral nervous systemNeuronal OutgrowthArticleWhite matter03 medical and health sciencesRats NudemedicineAnimalsHumansRNA MessengerStem Cell Research - Embryonic - HumanTraumatic Head and Spine InjuryTransplantationStem Cell Research - Induced Pluripotent Stem CellNeurosciencesStem Cell ResearchRats Inbred F344AxonsRatsMice Inbred C57BL030104 developmental biologynervous systemChondroitin Sulfate ProteoglycansRNACell Adhesion Molecules
researchProduct

GABA and Gap Junctions in the Development of Synchronized Activity in Human Pluripotent Stem Cell-Derived Neural Networks.

2017

The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide…

0301 basic medicineBiolääketieteet - Biomedicineneural networkstem cell derived neuronslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCalcium imagingPremovement neuronal activityhuman pluripotent stem cellsInduced pluripotent stem celllcsh:Neurosciences. Biological psychiatry. Neuropsychiatrygap junctionsOriginal ResearchArtificial neural networkGABAA receptorChemistrymicroelectrode arrayGap junctionsynchronyDepolarizationMultielectrode arraycalcium imaging030104 developmental biologynervous systemexcitatory GABANeuroscienceNeurotieteet - Neurosciences030217 neurology & neurosurgeryNeuroscienceFrontiers in cellular neuroscience
researchProduct

Bone regeneration in the stem cell era: safe play for the patient?

2017

The past decade has seen outstanding scientific progress in the field of stem cell (SC) research and clinical application. SCs are convenient both technically and biologically: they are easy to find and to culture and they can differentiate in virtually all tissues and even in whole organs. Induced pluripotent stem cells (iPSs) are a type of pluripotent SC generated in vitro directly from mature cells through the introduction of key transcription factors. The use of iPSs, however tantalizing, poses serious safety concerns because of their genomic instability. Recently, it has been suggested that the main mechanism of SC action relies on paracrine signals. Therefore, the secretome would be p…

0301 basic medicineBone Regenerationbusiness.industryMechanism (biology)Cellular differentiationInduced Pluripotent Stem CellsCell DifferentiationParacrine signalsGeneral MedicineRisk Assessment03 medical and health sciences030104 developmental biologyInnovative TherapiesRheumatologyRisk analysis (engineering)HumansMedicinePatient SafetyStem cellCell differentiation Growth factor Induced pluripotent stem cell Risk Safety Transformation TumourigenesisInduced pluripotent stem cellbusinessBone regenerationStem Cell Transplantation
researchProduct

Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury.

2019

Drug-induced liver injury is a major cause of drug discovery failure in clinical trials and a leading cause of liver disease. Current preclinical drug testing does not predict hepatotoxicity which highlights the importance of developing highly predictive cell-based models. The use of stem cell technology and differentiation into hepatocyte-like cells (HLCs) could provide a stable source of hepatocytes for multiple applications, including drug screening. HLCs derived from both embryonic and induced pluripotent stem cells have been used to accurately predict hepatotoxicity as well as to test individual-specific toxicity. Although there are still many limitations, mainly related to the lack of…

0301 basic medicineCancer ResearchPopulationCellInduced Pluripotent Stem CellsDrug Evaluation PreclinicalBiology03 medical and health sciencesLiver disease0302 clinical medicinemedicineAnimalsHumansInduced pluripotent stem celleducationMolecular BiologyEmbryonic Stem Cellseducation.field_of_studyDrug discoveryCell DifferentiationCell Biologymedicine.diseaseEmbryonic stem cell030104 developmental biologymedicine.anatomical_structurePhenotypeHepatocyteCancer researchHepatocytesStem cellChemical and Drug Induced Liver Injury030217 neurology & neurosurgeryDevelopmental BiologyDifferentiation; research in biological diversity
researchProduct

A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem ce…

2016

AbstractHutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process an…

0301 basic medicineCell typecongenital hereditary and neonatal diseases and abnormalitiesPhenotypic screeningInduced Pluripotent Stem CellsRetinoic acidTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundProgeriaOsteogenesis[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]medicineHumansInduced pluripotent stem cellChildIsotretinoinGeneticsProgeriaMultidisciplinaryintegumentary systemGuided Tissue RegenerationMesenchymal stem cellnutritional and metabolic diseasesAging PrematureCell DifferentiationMesenchymal Stem Cellsmedicine.diseaseProgerinAlkaline PhosphataseLamin Type A3. Good healthCell biologyHigh-Throughput Screening Assays030104 developmental biologychemistryGene Expression Regulation[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Alkaline phosphataseScientific Reports
researchProduct

Quantitatively characterizing drug-induced arrhythmic contractile motions of human stem cell-derived cardiomyocytes.

2018

Quantification of abnormal contractile motions of cardiac tissue has been a noteworthy challenge and significant limitation in assessing and classifying the drug-induced arrhythmias (i.e. Torsades de pointes). To overcome these challenges, researchers have taken advantage of computational image processing tools to measure contractile motion from cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). However, the amplitude and frequency analysis of contractile motion waveforms doesn't produce sufficient information to objectively classify the degree of variations between two or more sets of cardiac contractile motions. In this paper, we generated contractile motion dat…

0301 basic medicineComputer scienceImage ProcessingComputational algorithmArrhythmiasRegenerative MedicineCardiovascularApplied Microbiology and Biotechnologyphase space reconstruction0302 clinical medicineComputer-AssistedImage Processing Computer-AssistedMyocytes CardiacComputingMilieux_MISCELLANEOUS[ INFO.INFO-IM ] Computer Science [cs]/Medical ImagingStem Cell Research - Induced Pluripotent Stem Cell - HumanOptical ImagingHeart DiseaseNetworking and Information Technology R&DStem cellBiological systemCardiacBiotechnologyCytological TechniquesInduced Pluripotent Stem CellsOptical flowTorsades de pointesImage processingBioengineeringarrhythmiaArticlebiosignal processingoptical flow03 medical and health sciencesMotionMatch movingmedicine[INFO.INFO-IM]Computer Science [cs]/Medical ImagingHumansMyocytesStem Cell Research - Induced Pluripotent Stem CellCardiac arrhythmiaArrhythmias CardiacTissue physiologymedicine.diseaseStem Cell ResearchMyocardial Contractioncardiac motion030104 developmental biology030217 neurology & neurosurgerySoftware
researchProduct

Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming.

2016

During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors. Reprogramming-induced mitochondrial fission is associated with a minor decrease in mitochondrial mass but not with mitophagy. The pro-fission factor Drp1 is phosphorylated early in reprogramming, and its knockdown and inhibition…

0301 basic medicineDynaminsSomatic cellMAP Kinase Signaling SystemScienceCèl·lulesCellInduced Pluripotent Stem CellsKruppel-Like Transcription FactorsGeneral Physics and AstronomyBiologyMitochondrionMitochondrial DynamicsGeneral Biochemistry Genetics and Molecular BiologyMitocondrisArticleCell LineProto-Oncogene Proteins c-myc03 medical and health sciencesKruppel-Like Factor 4MiceMitophagymedicineAnimalsPhosphorylationInduced pluripotent stem cellGeneticsMultidisciplinarySOXB1 Transcription FactorsQGeneral ChemistryCellular ReprogrammingCell biologyMitochondria030104 developmental biologymedicine.anatomical_structurePhosphorylationMitochondrial fissionReprogrammingOctamer Transcription Factor-3Nature communications
researchProduct

Upgrading from iMac to iMicro

2017

In this issue of Immunity, Takata et al. (2017) describe a novel method to differentiate macrophages from iPSCs. These cells, which they call iMacs, are similar to yolk-sac-derived macrophages and are capable of undergoing terminal differentiation into tissue-resident-like macrophages in vitro and in vivo.

0301 basic medicineFetusMacrophagesCellular differentiationImmunologyCell DifferentiationBiologyCell biology03 medical and health sciencesFetus030104 developmental biologyInfectious Diseasesmedicine.anatomical_structureImmunityembryonic structuresImmunologymedicineHumansImmunology and AllergyYolk sacInduced pluripotent stem cellYolk SacImmunity
researchProduct